Freezing rain is rain maintained at temperatures below melting point by the ambient air mass that causes freezing on contact with surfaces. Unlike a mixture of rain and snow or ice pellets, freezing rain is made entirely of liquid droplets. The raindrops become supercooling while passing through a sub-freezing layer of air hundreds of meters above the ground, and then freeze upon impact with any surface they encounter, including the ground, trees, electrical wires, aircraft, and automobiles. The resulting ice, called glaze ice, can accumulate to a thickness of several centimeters and cover all exposed surfaces. The METAR code for freezing rain is FZRA.
A storm that produces a significant thickness of glaze ice from freezing rain is often referred to as an ice storm. Although these storms are not particularly violent, freezing rain is notorious for causing travel problems on roadways, breaking tree limbs, and downing from the weight of accumulating ice. Downed power lines cause power outages in affected areas while accumulated ice can also pose significant overhead hazards. It is also known for being extremely dangerous to aircraft since the ice can effectively 'remould' the shape of the airfoil and flight control surfaces. (See atmospheric icing.)National Weather Service Forecast Office, La Crosse, Wisconsin. Significant Weather Phenomena Matrix. Retrieved on 2006-12-08.
Freezing rain develops when falling snow encounters a layer of warm air aloft, typically around the level, causing the snow to melt and become rain. As the rain continues to fall, it passes through a layer of subfreezing air just above the surface and cools to a temperature below freezing (). If this layer of subfreezing air is sufficiently deep, the raindrops may have time to freeze into ice pellets (sleet) before reaching the ground. However, if the subfreezing layer of air at the surface is very shallow, the rain drops falling through it will not have time to freeze and they will hit the ground as Supercooling rain. When these supercooled drops make contact with the ground, power lines, tree branches, aircraft, or anything else below 0 °C, a portion of the drops instantly freezes, forming a thin film of ice, hence freezing rain. The specific physical process by which this occurs is called nucleation.
The intensity of the radar echoes (reflectivity) is proportional to the form (water or ice) of the precipitation and its diameter. In fact, rain has much stronger reflective power than snow, but its diameter is much smaller. So, the reflectivity of rain coming from melted snow is only slightly higher. In the layer where the snow is melting, however, the wet flakes still have a large diameter and are coated with water, so the radar returns are much stronger.
The presence of this brightband indicates the presence of a warm layer above ground where snow can melt. This could be producing rain on the ground or the possibility of freezing rain if the temperature is below freezing. The accompanying image shows how such an artifact can be located with a cross-section through radar data. The height and slope of the brightband will give clues to the extent of the region where melting is occurring. Then, it is possible to associate this clue with surface observations and numerical prediction models to produce output such as the ones seen on television weather programs, where radar echoes are shown distinctly as rain, mixed, and snow precipitations.
Freezing rain and glaze ice on a large scale is called an ice storm. Effects on plants can be severe, as they cannot support the weight of the ice. Trees may snap as they are dormant and fragile during winter weather. Pine trees are also victims of ice storms as their needles will catch the ice, but not be able to support the weight. In February 1994, a severe ice storm caused over $1 billion in damage in the Southern United States, primarily in Mississippi, Tennessee, Alabama, and Western North Carolina, especially the Appalachians. One particularly severe ice storm struck eastern Canada and northern parts of New York and New England in the North American ice storm of 1998.
An aircraft can most easily avoid freezing rain by moving into warmer air. Under most conditions, this would require aircraft to descend, which it can usually do safely and easily even with a moderate accumulation of structural ice. However, freezing rain is accompanied by a temperature inversion aloft, meaning that aircraft are required to climb to move into warmer air, which is a potentially difficult and dangerous task with even a small amount of ice accumulation.
For example, in 1994, American Eagle Flight 4184 encountered heavy air traffic and poor weather that postponed the arrival of this flight at Chicago's O'Hare International Airport, where it was to have landed en route from Indianapolis, Indiana. The ATR-72, a twin-engine turboprop carrying 68 people, entered a holding pattern southeast of O'Hare. As the plane circled, supercooled cloud droplets, freezing rain or freezing drizzle formed a ridge of ice on the upper surface of its wings, eventually causing the aircraft's autopilot to suddenly disconnect and the pilots to lose control. The ATR disintegrated on impact with a field below; all passengers and crew were killed.
Effects
At ground level
Aircraft
Ghost apples
See also
External links
|
|